Using Bayesian Priors for More Flexible Latent Class Analysis
نویسندگان
چکیده
Latent class analysis is based on the assumption that within each class the observed class indicator variables are independent of each other. We explore a new Bayesian approach that relaxes this assumption to an assumption of approximate independence. Instead of using a correlation matrix with correlations fixed to zero we use a correlation matrix where all correlations are estimated using an informative prior with mean zero but non-zero variance. This more flexible approach easily accommodates LCA model misspecifications and thus avoids spurious class formations that are caused by the conditional independence violations. Simulation studies and real data analysis are conducted using Mplus.
منابع مشابه
Mixture class recovery in GMM under varying degrees of class separation: frequentist versus Bayesian estimation.
Growth mixture modeling (GMM) represents a technique that is designed to capture change over time for unobserved subgroups (or latent classes) that exhibit qualitatively different patterns of growth. The aim of the current article was to explore the impact of latent class separation (i.e., how similar growth trajectories are across latent classes) on GMM performance. Several estimation conditio...
متن کاملBayesian Sample size Determination for Longitudinal Studies with Continuous Response using Marginal Models
Introduction Longitudinal study designs are common in a lot of scientific researches, especially in medical, social and economic sciences. The reason is that longitudinal studies allow researchers to measure changes of each individual over time and often have higher statistical power than cross-sectional studies. Choosing an appropriate sample size is a crucial step in a successful study. A st...
متن کاملBayesian inference with posterior regularization and applications to infinite latent SVMs
Existing Bayesian models, especially nonparametric Bayesian methods, rely on specially conceived priors to incorporate domain knowledge for discovering improved latent representations. While priors affect posterior distributions through Bayes’ rule, imposing posterior regularization is arguably more direct and in some cases more natural and general. In this paper, we present regularized Bayesia...
متن کاملBayesian Inference on Periodicities and Component Spectral Structure in Time Series
We detail and illustrate time series analysis and spectral inference in autoregressive models with a focus on the underlying latent structure and time series decompositions. A novel class of priors on parameters of latent components leads to a new class of smoothness priors on autoregressive coe cients, provides for formal inference on model order, including very high order models, and leads to...
متن کاملBayesian inferences of latent class models with an unknown number of classes.
This paper focuses on analyzing data collected in situations where investigators use multiple discrete indicators as surrogates, for example, a set of questionnaires. A very flexible latent class model is used for analysis. We propose a Bayesian framework to perform the joint estimation of the number of latent classes and model parameters. The proposed approach applies the reversible jump Marko...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011